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SOME NEW FIXED POINT RESULTS IN ULTRA METRIC SPACE

LJILJANA GAJIC1, MUHAMMAD ARSHAD2, SAMI ULLAH KHAN3, LATIF UR RAHMAN2

Abstract. The purpose of the present paper is to continue the study of fixed point theory in

ultra metric spaces. Concretely, we apply the strong quasi contractive mapping to the results

of Gajic [4] and establish some new fixed point results in spherically complete ultrametric space

for single valued and multivalued maps and extend the corresponding results for the pair of

Junck type mappings. The presented results unify, extend, and improve several results in the

related literature.
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1. Introduction and preliminaries

In 1922, Banach established the most famous fundamental fixed point theorem (the so-called

Banach contraction principle [1]) which has played an important role in various fields of applied

mathematical analysis. Due to its importance and simplicity, several authors have obtained

many interesting extensions and generalizations of the Banach contraction principle. Ciric [2],

introduced quasi contraction, which is a generalization of Banach contraction principle. Roovij

in [10] introduced the concept of Ultrametric space. Later, Petalas et al., [9] and Gajic [4]

studied fixed point theorems of contractive type maps on a spherically complete ultra metric

spaces [6] which are generalizations of the Banach fixed point theorems. Rao etal.,[11] obtained

two coincidence point theorems for three and four self maps in ultra metric space. Kubiaczyk

et al. [7] extend the fixed point theorems from the single-valued maps to the set- valued con-

tractive maps. Then Gajic [5] gave some generalizations of the result of [10]. Again, Rao [12]

proved some common fixed point theorems [3] for a pair of maps of Jungck type on a spheri-

cally complete ultra metric space. Zhang et al. [13] introduced generalized weak-contraction,

which is a generalization of Banach contraction principle. Recently, Pant [8] obtained some new

fixed point theorems for set-valued contractive and nonexpansive mappings in the setting of

ultrametric spaces.

Definition 1.1. [10] Let (X, d) be a metric space. If the metric d satisfiesis strong triangle

inequality:

for all x, y, z ∈ X

d(x, y) ≤ max{d(x, z), d(z, y)};

Then it is called an ultrametric on X. The pair (X, d) is called an ultrametric space.
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Definition 1.2. [2] A self mapping T : X → X on the metric space (X, d) is said to be quasi-

contraction if,

d(Tx, Ty) ≤ k.max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(x, Ty)},

where 0 ≤ k < 1.

Definition 1.3. [10] An ultrametric space is said to be spherically complete if the intersection

of nested balls in X is non-empty.

Gajic [4] proved the following result.

Theorem 1.1. Let (X, d) be a spherically complete ultra metric space. If T : X → X is a

mapping such that

d(Tx, Ty) < max{d(x, y), d(x, Tx), d(y, Ty)} for all x, y ∈ X, x ̸= y.

Then T has a unique fixed point in X.

Theorem 1.2. (Zorn’s lemma). Let S be a partially ordered set. If every totally ordered subset

of S has an upper bound, then S contains a maximal element.

Definition 1.4. An element x ∈ X is said to be a coincidence point of f : X → X and

T : X → 2XC ( where 2XC is the space of all nonempty compact subsets of X ). If fx ∈ Tx , we

denote

C (f, T ) = {x ∈ X / fx ∈ Tx} ,

the set of coincidence points of f and T .

Definition 1.5. Let (X, d) be an ultrametric space, and f : X → X and T : X → 2XC . f and

T are said to be coincidentally commuting at z ∈ X if fz ∈ Tz implies fTz ⊆ Tfz.

Definition 1.6. For A, B ∈ B(X), (B (X) is the space of all nonempty bounded subsets of X),

the Hausdorff metric is defined as:

H (A,B) = max

{
sup
x∈B

d (x,A) , sup
y∈A

d (x, b)

}
;

where d (x,A) = inf {d (x, a) :a ∈ A } .

2. The results

In this section, we apply the strong quasi-contractive mapping [2] on the results of Gajic [4]

and establish some new fixed point results for strong quasi-contractive mapping in spherically

complete ultrametric space for single valued and multivalued maps and extend the corresponding

results for the pair of Junck type mappings.

Let us prove our first main result.

Theorem 2.1. Let (X, d) is spherically complete ultrametric space satisfying strong quasi-

contractive condition

d(Tx, Ty) < max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} for all x, y ∈ X. (1)

Then T has a unique fixed point in X.
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Proof. Let Sa = (a, d(a, Ta)) is a closed sphere whose centre is a and radius d(a, Ta) for all

a ∈ X , d (a, Ta) > 0 and let F is the collection of all such spheres on which the partial order is

defined like Sb ⊆ Sa iff SaSb. Let F1 is totaly ordered subfamily of F. As (X, d) is spherically

complete so ∩
Sa∈F1

Sa = S ̸= ϕ.

Let b ∈ S =⇒ b ∈ Sa , as Sa ∈ F1. Hence, d(a, b) ≤ d(a, Ta).

If a = b then Sa = Sb. Assume that a ̸= b.

Let x ∈ Sb =⇒

d(x, b) ≤ d(b, T b) ≤ max{d(b, a), d(a, Ta), d(Ta, Tb)}
≤ max{d(b, a), d(a, Ta),max{d(a, b), d(b, T b), d(a, Ta), d(a, T b), d(b, Ta)}} using (1)

As d(a, T b) ≤ max{d(a, b), d(b, T b)},
and d(b, Ta) ≤ max{d(b, a), d(a, Ta)}.
Then d(x, b) ≤ max{d(b, a), d(a, Ta),max{d(a, b), d(b, T b), d(a, Ta),max{d(a, b), d(b, T b)},

max{d(b, a), d(a, Ta)}}} ≤ max{d(b, a), d(a, Ta)} = d(a, Ta).

Now

d(x, a) ≤ max{d(x, b), d(b, a)} ≤ d(a, Ta).

So

x ∈ Sa implies Sb ⊆ Sa for all Sa ∈ F1.

Hence Sb is the upper bound of F for the family F1. Hence by the Zorn’s lemma F has a

maximal element Sc for some c ∈ X.

Now, we are going to prove that Tc = c. Suppose on contrary that Tc ̸= c. i.e, d (c, T c) > 0.

d(Tc, TTc) < max{d(c, T c), d(c, T c), d(Tc, TTc), d(c, TTc), d(Tc, T c)}.
As d(c, TTc) ≤ max{d(c, T c), d(Tc, TTc)
d(Tc, TTc) < max{d(c, T c), d(c, T c), d(Tc, TTc),max{d(c, T c), d(Tc, TTc)}

< max{d(c, T c), d(Tc, TTc) = d(c, T c).

implies that d(Tc, TTc) < d(c, T c).

Then y ∈ STc implies

d(y, T c) ≤ d(Tc, TTc) < d(c, T c).

i.e.

d(y, T c) < d(c, T c).

As

d(y, c) ≤ max{d(y, T c), d(Tc, c)} = d(c, T c),

y ∈ Sc implies that STcSc, which is contradiction to the maximality of Sc. Hence Tc = c.

For the uniqueness let Tv = v be another fixed point. Then

d (c, v) = d (Tc, Tv) < max{d(c, v), d(c, T c), d(v, Tv), d(c, Tv), d(v, T c)}
= d(c, v),

which is contradiction. �
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Example 2.1. Let X = (R, d) is a discrete metric space which is an ultrametric space defined

as

d(x, y) =

{
0 if x = y

1 if x ̸= y

Let Tx = c, then Tc = c is the fixed point where c is any real constant.

Example 2.2. Let X = { a, b, c, d } with d(a, b) = d(c, d) = 1
2 , d(a, c) = d(a, d) = 1 then (X, d)

is spherically complete ultrametric space. Define T : X → X by Ta = a, T b = a, T c = a, Td = b.

Then d(Tc, Td) = d(a, b) = 1
2 = d(c, d), the mapping T satisfies the contractive condition of

Theorem 2.1.

Gajic [5] proved the following theorem for multivaled mappings in the setting of ultra metric

spaces.

Theorem 2.2. Let (X, d) be the spherically complete ultrametric space if T : X → 2XC is such

that for any x, y ∈ X , x ̸= y,

H (Tx, Ty) < max{d(x, y), d(x, Tx), d(y, Ty)}.

Then T has a fixed point. ( i.e there exist x ∈ X, such that x ∈ Tx ).

Now we will prove a multivalued fixed point theorem using strong quasi-contractive mapping

in ultrametric space.

Theorem 2.3. Let (X, d) is spherically complete ultrametric space if T : X → 2XC is such that

for any x,y∈ X , x ̸= y, satisfying the following condition.

H(Tx, Ty) < max{d(x, y), d(x, Tx), d(y, Ty) ,d(x, Ty), d(y, Tx)}}. (1)

Then T has a unique fixed point in X.

Proof. Let Sa = (a, d(a, Ta)) is a closed sphere whose centre is a and radius d(a, Ta) =

infd∈Ta d(a, d) for all a ∈ X such that d (a, Ta) > 0. Let F is the collection of all such spheres

on which the partial order is defined like Sb ⊆ Sa if SaSb and let F1 is totally ordered subfamily

of F. As (X, d) is spherically complete

Sa∈F1Sa = S ̸= ϕ.

Let b ∈ S =⇒ b ∈ Sa, as Sa ∈ F1, hence d(a, b) ≤ d(a, Ta). Take u ∈ Ta such that

d(a, u) = d(a, Ta) (it is possible because Ta is non-emty compact set). If a = b then Sa = Sb.

Assume that a ̸= b. For x ∈ Sb, implies that

d(x, b) ≤ d(b, T b) = inf
v∈Tb

d (b, v) ≤ max{d(b, a), d(a, u), inf
v∈Tb

d(u, v)}

≤ max{d(a, Ta),H(Ta, Tb)}
≤ max{d(a, Ta),max{d(a, b), d(b, T b), d(a, Ta), d(a, T b), d(b, Ta)}} using (1) .

As d(a, T b) ≤ max{d(a, b), d(b, T b)}
and d(b, Ta) ≤ max{d(b, a), d(a, Ta)}.

d(x, b) ≤ max{d(b, a), d(a, Ta),max{d(a, b), d(b, T b), d(a, Ta),max{d(a, b), d(b, T b)},
max{d(b, a), d(a, Ta)}}}.

≤ max{d(b, a), d(a, Ta)} = d(a, Ta).

d(x, b) ≤ d(a, Ta).
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Now

d(x, a) ≤ max{d(x, b), d(b, a)} ≤ d(a, Ta).

So x ∈ Sa and Sb ⊆ Sa for all Sa ∈ F1. Hence Sb is the upper bound of F for the family F1.

Hence by the Zorn’s lemma F has a maximal element Sc for some c ∈ X. we are going to prove

that c ∈ Tc. Suppose c /∈ Tc, then there exists c ∈ Tc such that d (c, c) = d (c, T c) . Now

d(c, T c) ≤ H (Tc, T c) < max{d(c, c), d(c, T c), d(c, T c), d(c, T c), d(c, T c}
≤ max{d(c, c), d(c, T c), d(c, T c),max{d(c, c), d(c, T c)},max{d(c, c}, d(c, T c)}
≤ max{d(c, T c), d(c, T c) = d(c, T c).

This implies

d(c, T c) < d(c, T c).

Let y ∈ Sc. This implies that

d(y, c) ≤ d(c, T c) < d(c, T c).

As

d(y, c) ≤ max{d(y, c), d(c, c)} = d(c, T c),

y ∈ Sc implies that ScSc, as c /∈ Sc which is contradiction to the maximality of Sc. Hence

c ∈ Tc. �

Example 2.3. Let X = {a, b, c, e}, d(a, c) = d(a, e) = d(b, c) = d(b, e) = 1, d(a, b) = d(c, e) = 3
4 .

It is well known that (X, d) is complete Ultrametric space.

Define function T (a) = T (b) = T (c) = {a} and T (e) = {a, b}.
Hence, all the conditions of Theorem 2.3 can be satisfied.

Now we extend this idea to pair of Junck type mapping using strong quasi -contractive mapping.

Theorem 2.4. Let (X, d) be a complete ultrametric space and T, f : X → X be two self maps

on X which satisfies the following conditions:

1) TX ⊂ fX;

2) d(Tx, Ty) < max{d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Tx)} for all x, y ∈ X;

3) fX is spherically complete.

Then T and f have a common point c ∈ X and if T and f are coincidently commuting at c

i.e. Tfc = fTc then Tc = fc = c.

Proof. Let Sa = (fa, d(fa, Ta))
∩

fX is a closed sphere in fX whose centre is fa for all a in

X with radii d(fa, Ta). Let F is the collection of all such spheres on which the partial order

is defined like SaSb if Sb ⊆ Sa. Let F1 is totaly ordered subfamily of F. As fX is spherically

complete

Sa∈F1Sa = S ̸= ϕ.
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For fb ∈ S =⇒ fb ∈ Sa as Sa ∈ F1, hence d(fa, fb) ≤ d(fa, Ta). If fa = fb then Sa = Sb.

Assume that a ̸= b, and let x ∈ Sb. Then

d(x, fb) ≤ d(fb, T b) ≤ max{d(fb, fa), d(fa, Ta), d(Ta, Tb)}
≤ max{d(fb, fa), d(fa, Ta) max{d(fa, fb), d(fb, T b), d(fa, Ta),

d(fa, T b), d(fb, Ta)}}.
As d(fa, T b) ≤ max{d(fa, fb), d(fb, T b)},

and d(fb, Ta) ≤ max{d(fb, fa), d(fa, Ta)}.
Then d(x, fb) ≤ max{d(fb, fa), d(fa, Ta) max{d(fa, fb), d(fb, T b), d(fa, Ta),

max{d(fa, fb), d(fb, T b)}},
max{d(fb, fa), d(fa, Ta)} = d(fa, Ta).

Now

d(x, fa) ≤ max{d(x, fb), d(fb, fa)} ≤ d(fa, Ta).

implies x ∈ Sa so Sb ⊆ Sa for all Sa ∈ F1. Hence Sb is the upper bound of F for the family F1,

hence by the Zorn’s lemma F has a maximal element Sc for some c ∈ X. We are going to prove

that Tc = fc. Suppose Tc ̸= fc, as TX ⊆ fX there is e ∈ X such that Tc = fe and c ̸= e.

d(fe, Te) = d(Tc, Te) < max{d(fc, fe), d(fc, T c), d(fe, Te), d (fc, Te) , d (fe, T c)}
= max{d(fc, fe), d(fe, Te), d (fc, Te)
≤ max{d(fc, fe), d(fe, Te), d (fe, fe) , d (fc, fe) , d (fe, Te)}
= d(fc, fe).

This means that

d(fe, Te) < d(fc, fe).

Let y ∈ Se. Then

d(y, fe) ≤ d(fe, Te) < d(fc, T c),

implies

d(y, fe) < d(fc, T c).

As

d(y, fc) ≤ max{d(y, fe), d(fe, fc)} = d(fc, T c),

y ∈ Sc so Se ⊆ Sc. As fc /∈ Se ⇒ SeSc. It is contradiction to the maximality of Sc, hence Tc = fc.

Suppose f and T are coincidently commuting at c ∈ X, then f2c = f(fc) = fTc = Tfc = T 2c.

Let fc ̸= c. Now

d(Tfc, T c) < max{d(f2c, fc), d(f2c, T c), d(fc, T c), d
(
f2c, T c

)
, d (fc, Tfc)}

≤ max{d(f2c, T c), d (fc, Tfc)}
= d(Tfc, T c) ⇒ d(Tfc, T c) < d(Tfc, T c).

Which is contradiction, hence Tc = fc = c.

For the uniquness, let e be another fixed point. i.e, Te = fe = e.

d(Te, T c) < max{d(fe, fc), d(fe, Te), d(fc, T c), d (fe, T c) , d (fc, Te)} < d(Te, T c),

which is contradiction. �
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Example 2.4. Let (X = R, d) is discrete matric space,

d(x, y) =

{
0 if x = y

1 if x ̸= y

Let Tx = 7, fx = x+7
7 satisfy the above conditions, has a fixed point x = 7.

Remark 2.1. We can suppose that f is spherically complete, if f is surjective.

Now we prove the result for Junck type multivalued functions.

Theorem 2.5. Let (X, d) be an ultrametric space and Let T : X → 2XC and f is self map on X

which satisfy the following conditions;

i) Tx ⊆ fX, for all x ∈ X;

ii) H(Tx, Ty) < max{d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Tx)} for all x, y ∈ X,

x ̸= y;

iii) fX is spherically complete.

Then there exists z ∈ X such that fz ∈ Tz.

Further assume that

iv) d(fx, fu) ≤ H(Tfy, Tu) for all x, y, u ∈ X with fx ∈ Ty and

f and T are coincidentally commuting at c , then fc is the unique common fixed point of f

and T.

Proof. Let Sa = (fa, d(fa, Ta))
∩

fX is a closed sphere in fX whose centre is fa and radius

d(fa, Ta) = infd∈Ta d(fa, d) for all a ∈ X, d (fa, Ta) > 0 . Let F is the collection of all such

spheres on which the partial order is defined like Sb ⊆ Sa if SaSb and let F1 is totaly ordered

subfamily of F. As (X, d) is spherically complete so∩
Sa∈F1

Sa = S ̸= ϕ.

Now fb ∈ S =⇒ fb ∈ Sa, as Sa ∈ F1, hence d(fa, fb) ≤ d(a, Ta).

Take u ∈ Ta such that d(fa, u) = d(fa, Ta) (it is possible because Ta is non-empty compact

set). If fa = fb then Sa = Sb. Assume that fa ̸= fb.

For x ∈ Sb implies

d(x, fb) ≤ d(fb, T b) = inf
v∈Tb

d (fb, v) ≤ max{d(fb, fa), d(fa, u), inf
v∈Tb

d(u, v)}.

d (fb, fa) ≤ max d(fa, Ta),H(Ta, Tb) ≤ max{d(fb, fa), d(fa, Ta)
max{d(fa, fb), d(fb, T b), d(fa, Ta), d(fa, T b), d(fb, Ta)}}.

As d(fa, T b) ≤ max{d(fa, fb), d(fb, T b)},
and d(fb, Ta) ≤ max{d(fb, fa), d(fa, Ta)}.

d (x, fb) ≤ max{d(fb, fa), d(fa, Ta), max{d(fa, fb), d(fb, T b), d(fa, Ta),
max{d(fa, fb), d(fb, T b), d(fb, fa), d(fa, Ta)}}} = d(fa, Ta).

Now

d(x, fa) ≤ max{d(x, fb), d(fb, fa)} ≤ d(fa, Ta),

implies

x ∈ Sa so Sb ⊆ Sa for all Sa ∈ F1.

Hence Sb is the upper bound of F for the family F1, hence by the Zorn’s lemma F has a

maximal element Sc for some c ∈ X. Now, we are going to prove that fc ∈ Tc.
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Suppose fc /∈ Tc, then there exists fc ∈ Tc such that d (fc, fc) = d (fc, T c) > 0. Then

d(fc, T c) ≤ H (Tc, T c) < max{d(fc, fc), d(fc, T c), d(fc, T c), d (fc, T c) , d (fc, T c)}
≤ max{d(fc, T c), d(fc, T c),max{d (fc, fc) , d (fc, T c) ,max{d (fc, fc) , d (fc, T c)}}
= d(fc, T c).

This implies

d(fc, T c) < d(fc, T c).

Let y ∈ Sc. Then d(y, fc) ≤ d(fc, T c) < d(fc, T c).

Since

d(y, fc) ≤ max{d(y, fc), d(fc, fc)} = d(fc, T c).

y ∈ Sc so Sc ⊆ Sc. As fc /∈ Sc, it is contradtion to the maximality of Sc, hence fc ∈ Tc.

Further assume (iv) and write fc = e .Then e ∈ Tc.

d(e, fe) = d(fc, fe) ≤ H(Tfc, Te) = H(Te, Te) = 0.

This implies that fe = e. From (iv), e = fe ∈ fTc ⊆ Tfz = Te. Thus fc = e is a common fixed

point of f and T .

Suppose h ∈ X, such that e ̸= h = fh ∈ Th. From (iv)

d(e, h) = d(fe, fh) ≤ H(Tfe, Th) = H(Te, Th)

< max{d(fe, fh), d(fe;Te), d(fh, Th), d (fe, Th) , d (h, Te)} = d(e, h).

This implies that e = h. Thus e = fc is the unique common fixed point of f and T. �
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